

Welcome! We will begin at 12.30 CET

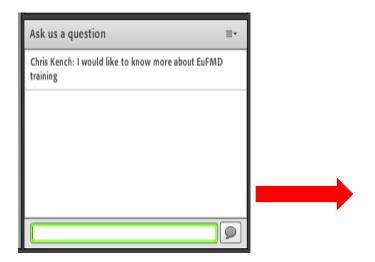
Before the webinar begins, you can check that your sound is working by selecting 'Meeting' and 'Audio Setup Wizard' and following the on-screen instructions. You don't need to set up a microphone.

If you have any problems, please use the chat box to ask for our help. You can also say hello to your fellow participants using this box.

Agenda

- 1. How to use the webinar screen
- **2.** Technical presentation:

Dr Siyi Feng


Market Impact of Foot-and-Mouth Disease Control Strategies: A UK Case Study

We will be recording the webinar

Introduction to the webinar screen

Who is listening? (Please choose the best answer):

- University-based
- Government Veterinary (contingency planning, epidemiology)
- Laboratory scientist
- Field veterinarian
- >International organization

≻Other

EuFMD Networks (join at https://eufmdlearning.works/)

Modelling

News

Contingency planning

Vaccination

Biorisk Management

Progressive Control Practitioners

Southern Italy

Modeling network news

Upcoming webinars in 2018:

- Rowland Kao (UK)
- Thomas Rawdon (NZ)

Remember the **recordings** are available on the e-learning site, as well as the **discussion forum** and **model inventory!**

Any questions? Contact us:

eufmd-training@fao.org,

Market Impact of Foot-and-Mouth Disease Control Strategies: A UK Case Study

Presentation to EuFMD Modelling network 7 December 2017

Siyi Feng, Myles Patton and John Davis, AFBI

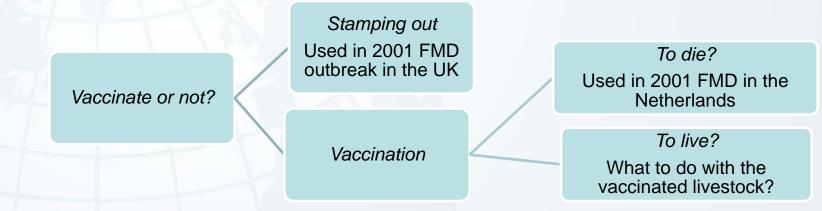
www.afbini.gov.uk

- Have you collaborated with economists in your previous research?
- Answer:
 - Yes
 - No

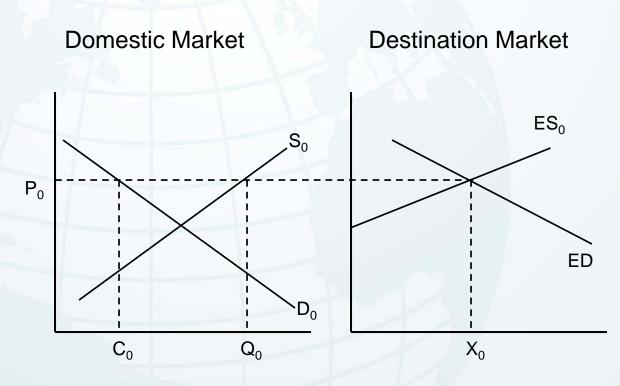
Acknowledgement

- Thanks to Animal and Plant Health Agency (APHA) of the UK for providing outputs from EXODIS epidemiology model
- We are very grateful for the comments given by Ann Seitzinger and Amy Hagerman from the Center for Epidemiology and Animal Health at USDA and Jonathan Rushton at University of Liverpool

Overview

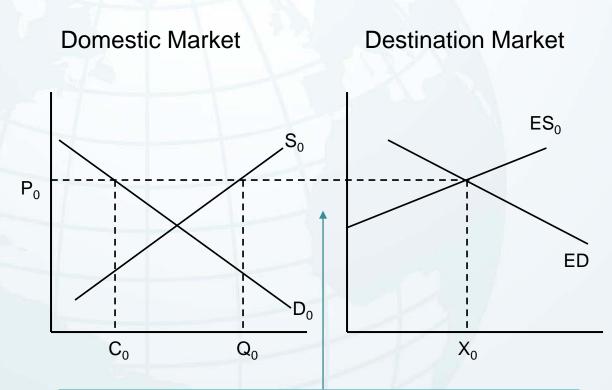

- Introduction
- Scenarios and Model
- Results
- Sensitivity Analysis
- Conclusions

INTRODUCTION



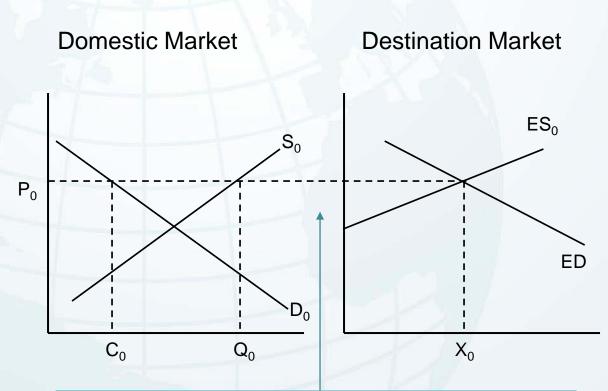
Introduction

FMD control strategies and their evaluation



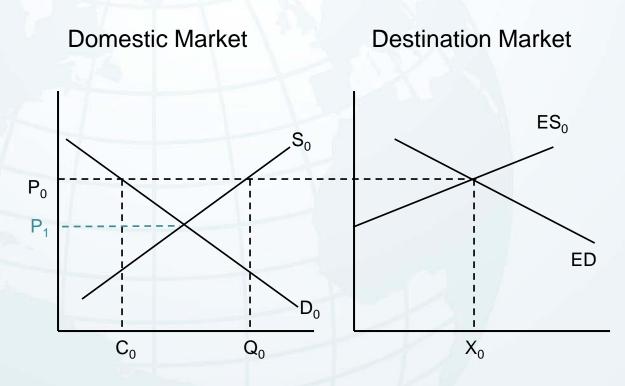
- Evaluations often just based on Benefit-Cost framework
 Provides detailed information on changes in profit for a farm or government budget implications
- BUT cannot capture market impacts
 Partial equilibrium models can contribute to evaluation process

Prior to Outbreak

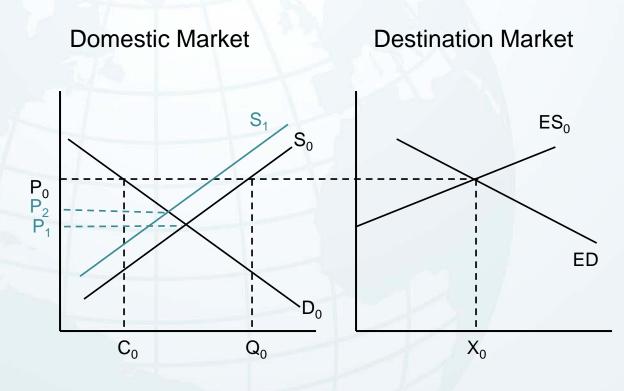

- Difference between supply & demand in the domestic market, yields quantity available for export (ES₀)
- Foreign demand for meat shown by ED

Prior to Outbreak

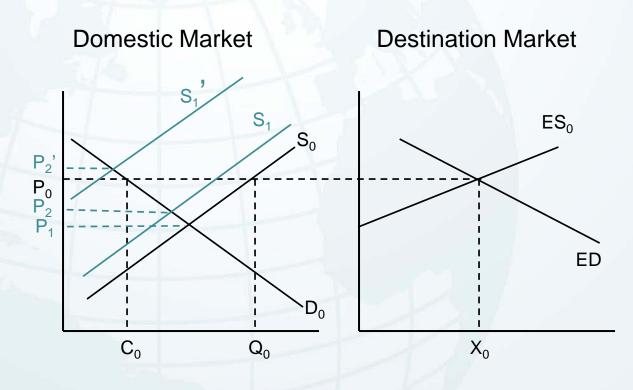
- Difference between supply & demand in the domestic market, yields quantity available for export (ES₀)
- Foreign demand for meat shown by ED


Equilibrium price (P_0) determined by point where excess supply for export equals import demand by other countries

Equilibrium price (P_0) determined by point where excess supply for export equals import demand by other countries


Prior to Outbreak

- Difference between supply & demand in the domestic market, yields quantity available for export (ES₀)
- Foreign demand for meat shown by ED
- UK is largely selfinsufficient in the livestock sector *import* implicitly in the domestic supply curve with important implications


FMD Outbreak Possible Impacts

- (i) Closure of export market
- Equilibrium price falls to P₁

FMD Outbreak Possible Impacts

- (i) Closure of export market
- Equilibrium price falls to P₁
- (ii) Production reduces due to culling of animals
- Domestic supply curve shifts left (S1)
- Equilibrium price increases from P₁ to P₂

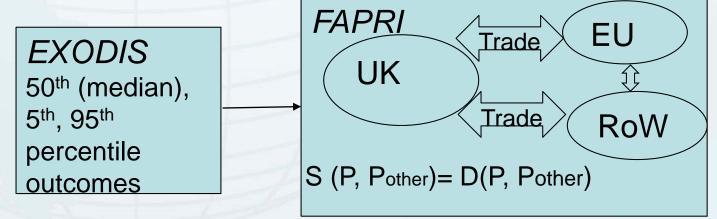
- P₂ not necessarily lower than P₀
- Remember the import part in the supply curve in the case of the UK

FMD Outbreak Possible Impacts

- (i) Closure of export market
- Equilibrium price falls to P₁
- (ii) Production reduces due to culling of animals
- Domestic supply curve shifts left (S1)
- Equilibrium price increases from P₁ to P₂

SCENARIOS AND MODEL

FMD Scenarios

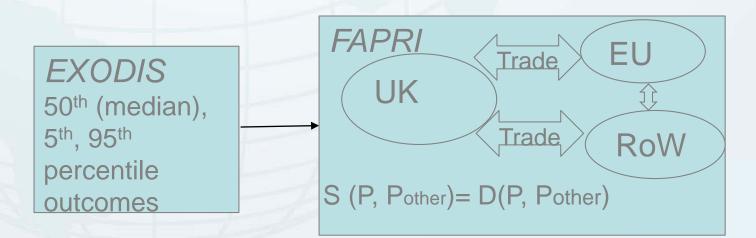

Animal and Plant Health Agency simulated EXODIS epidemiological model under alternative FMD control strategies

- Stamping-Out (SO)
- Vaccinate-to-Die (V-t-D)
- Vaccinate-to-Live (V-t-L)

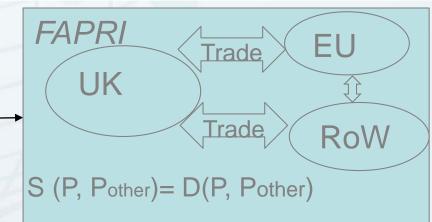
Outputs from EXODIS model used as input data within FAPRI-UK partial equilibrium model

- Duration of outbreak
- Number of culled animals
- Number of vaccinated animals
- Stochastic outcomes at different percentiles (50th, 5th, 95th) used

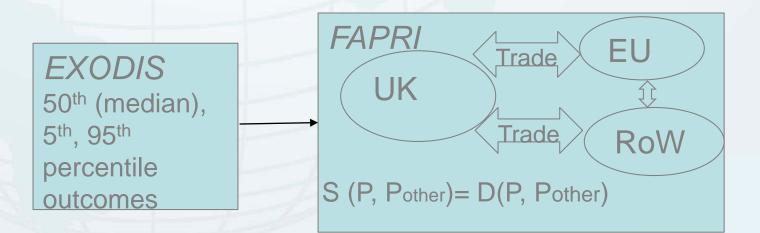
Scenarios compared against a Baseline with no disease outbreak



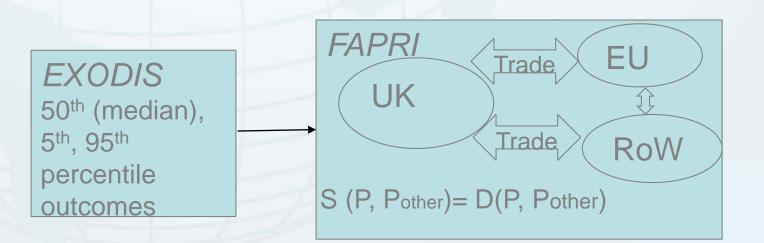
- Have you seen this type of study before?
- Answer:
 - Yes
 - No


Additional assumptions needed for economic modelling

- How long is the export ban?
 - Disease duration plus 90 (SO and V-t-D)/180 (V-t-L) days
- What to do with the vaccinated livestock in V-to-L?
 - Slaughter immediately but receive discounted value


(Results from EXODIS model)		Stamping-Out	Vaccinate-to-Die	Vaccinate-to-Live
Infected Premises	Median	230	120	179
	5 Percentile	134	75	115
	95 Percentile	360	181	264
Period to apply for	Median	182 (92+90)	139 (49+90)	243 (63+180)
Disease Free Status (days)	5 Percentile	151 (61+90)	125 (35+90)	229 (49+180)
(Disease period + Waiting period)	95 Percentile	237 (147+90)	165 (75+90)	281 (101+180)
Total Culled Animals	Median	342,558	1,020,682	280,375
	5 Percentile	191,310	636,701	171,690
	95 Percentile	593,892	1,444,701	441,683
Total Vaccinated Animals	Median	-	837,518	1,028,378
	5 Percentile	-	529,050	719,676
	95 Percentile	-	1,174,954	1,526,405

EXODIS 50th (median), 5th, 95th percentile outcomes


Sensitivity analysis 1 - import response

- Main analysis (<u>Endogenous displacement</u>) : modelling of import to the UK based on economic parameters
- <u>No displacement</u>: no displacement of import by export re-diverted to the domestic market (no reduction in import)
- <u>Substantial displacement</u>: import reduced by 90% of export re-diverted to the domestic market

Sensitivity analysis 2

• What is the maximum number of days of delay in culling in V-t-D without making it worse than SO?

RESULTS

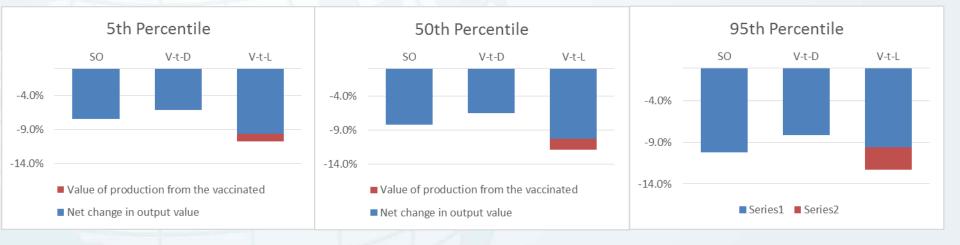
Prices fall following outbreak - impacts of export ban dominate fall in production, but the extent varies widely across sectors.

Prices fall following outbreak - impacts of export ban dominate fall in production, but the extent varies widely across sectors.

Severity of price drops increase with scale of the outbreaks. Some segments of the line are horizontal/ upward slopingproduction shock and length of export ban offsetting each other

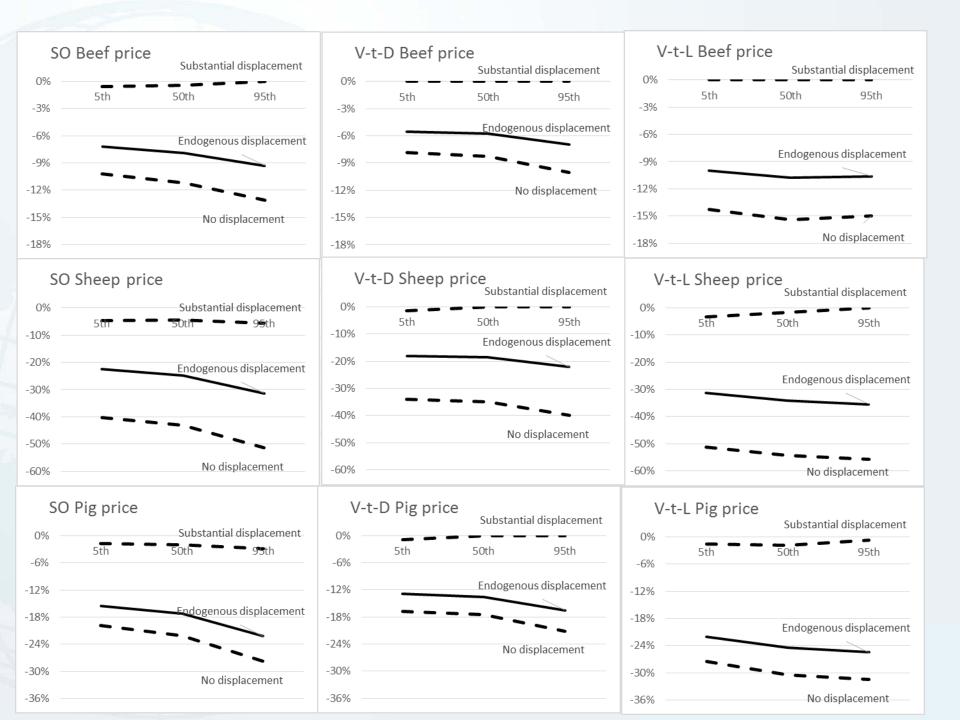
Prices fall following outbreak - impacts of export ban dominate fall in production, but the extent varies widely across sectors.

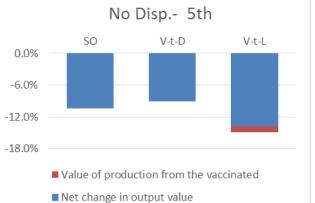
Severity of price drops increase with scale of the outbreaks. Some segments of the line are horizontal/ upward slopingproduction shock and length of export ban offsetting each other

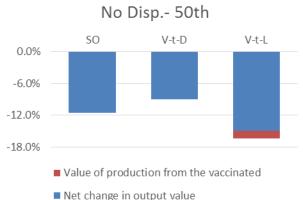

How does this translate into output values?

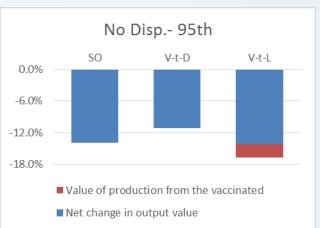
Poll question 3

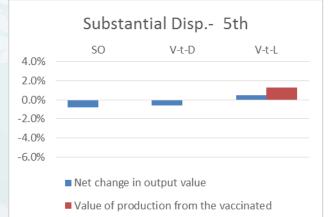
- Do you think the ranking of impact on output value follow a similar pattern, i.e. the least preferable for Vaccinate to Live and the most preferable for Vaccinate to Die?
- Answer:
 - Yes
 - No
 - It depends


Output values also fall following outbreak, severity increase with scale of the outbreaks. Example of beef sector

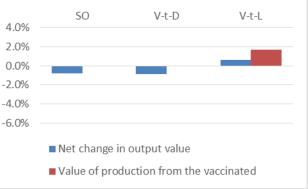

Ranking largely follows the price results. Vaccinate-to-Die is preferred most of the time. However, with large scale outbreak, Vaccinate-to-live no worse than Stamping out.

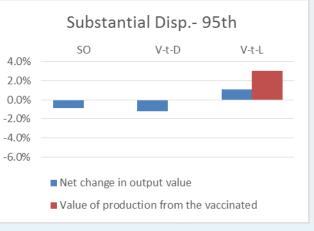

SENSITIVITY ANALYSIS- IMPORT DISPLACEMENT

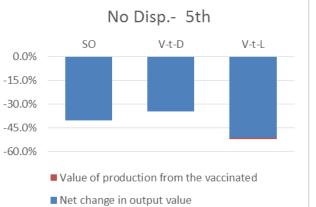


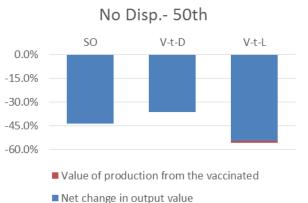


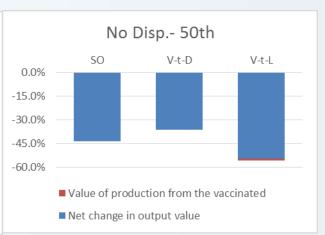
Beef Output Value

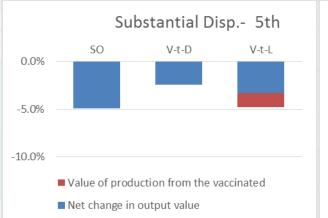


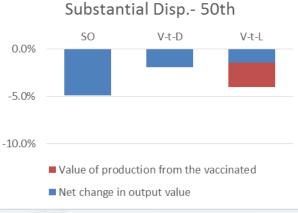


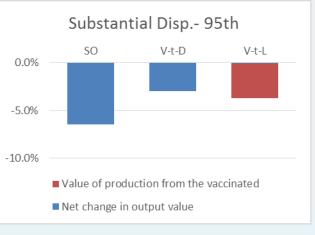


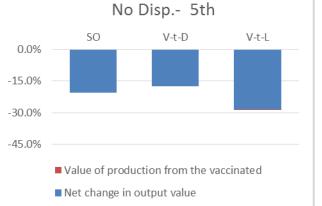


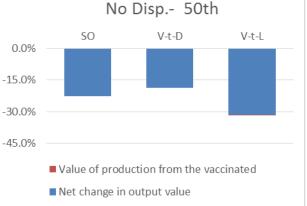


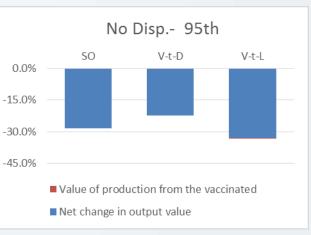


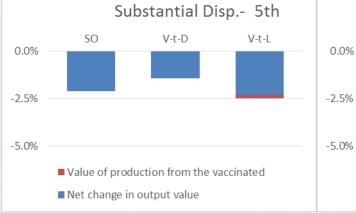

Sheep Output Value

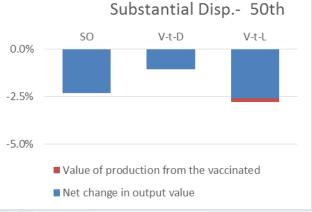


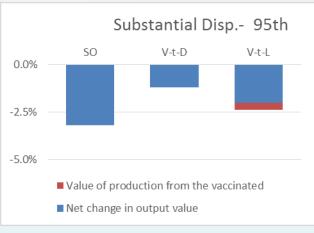









Pig Output Value



Delays in Vaccinate-to-Die

Possible delays to the waiting period under Vaccination-to-Die

- Previous scenarios assumed under Vaccination-to-Die that livestock can be culled in a timely manner
 - i.e. no extra time needed to complete culling of vaccinated animals
- But logistics may result in delays
 - E.g. under the median scenario, total number of culled animals is 3 times higher under Vaccinate-to-Die compared to Stamping-Out

• What is the *break-even* delay?

- Delay under Vaccinate-to-Die that results in all the sectors obtaining output values at least as much as the Stamping-Out case
- > 33 days (based on a median outbreak)

CONCLUSIONS

Conclusions

- Overall price effect negative
 - Closure of export markets outweighs fall in production
 - Regardless of control strategy
- Market impacts of Vaccination
 - Vaccinate-to-Die generally has the least impact. Logistical delays under Vaccinate-to-Die may diminish these benefits
 - Market impact usually the most serious in <u>Vaccinate-to-Live</u>, but can rival Stamping Out in large scale outbreaks
 - Other budgetary costs need to be considered as well
- Sensitivity analysis highlights uncertainties around the numerical results.
 - For a country with both imports and exports, import adjustment plays an important role- ranking of strategies can change with different rates of adjustment.

• Further readings:

- Paarlberg, P.L., Seitzinger, A.H., Lee, J.G. and Mathews Jr, K.H., 2008. Economic impacts of foreign animal disease. ERR- 57. US Dep. of Agric. Econ. Res. Serv.
- Hagerman, A.D., B. A. McCarl, T.E. Carpenter, M.P. Ward, and J. O'Brien. "Emergency Vaccination to Control Foot-and-Mouth Disease: Implications of its Inclusion as a US Policy Option." Applied Economic Perspectives and Policy 34, no. 1 (2012): 119-146.
- Buetre, B., S. Wicks, H. Kruger, N. Millist, A. Yainshet, G. Garner, A. Duncan, A. Abdalla, C. Trestrail, and M. Hatt. Potential Socio-Economic Impacts of an Outbreak of Foot-and-Mouth Disease in Australia. Canberra, Australia: Australian Bureau of Agricultural and Resource Economics and Sciences, 2013.
- Emails of authors:
- Siyi Feng: <u>siyi.feng@afbini.gov.uk</u>
- Myles Patton: <u>myles.patton@afbini.gov.uk</u>
- John Davis: john.davis@afbini.gov.uk